Statistical learning algorithms for identifying contrasting tillage practices with Landsat Thematic Mapper data

نویسندگان

  • Pijush Samui
  • Prasanna H. Gowda
  • Thomas Oommen
  • Thomas H. Marek
  • Terry A. Howell
  • PIJUSH SAMUI
  • PRASANNA H. GOWDA
  • THOMAS OOMMEN
  • TERRY A. HOWELL
  • THOMAS H. MAREK
  • DANA O. PORTER
چکیده

Statistical learning algorithms for identifying contrasting tillage practices with Landsat Thematic Mapper data Pijush Samui a , Prasanna H. Gowda b , Thomas Oommen c , Terry A. Howell b , Thomas H. Marek d & Dana O. Porter e a Centre for Disaster Mitigation and Management, VIT University, Vellore, Tamil Nadu, 632014, India b Conservation and Production Research Laboratory, USDA-ARS, Bushland, TX, 79012, USA c Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, 49931, USA d Texas AgriLife Research, Texas A&M University, Amarillo, TX, 79106, USA e Texas AgriLife Extension, Texas A&M University, Lubbock, TX, 79403, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing of crop residue cover and soil tillage intensity

Management of plant litter or crop residues in agricultural fields is an important consideration for reducing soil erosion and increasing soil organic C. Current methods of quantifying crop residue cover are inadequate for characterizing the spatial variability of residue cover within fields or across large regions. Our objectives were to evaluate several spectral indices for measuring crop res...

متن کامل

Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery

Although a large number of new image classification algorithms have been developed, they are rarely tested with the same classification task. In this research, with the same Landsat Thematic Mapper (TM) data set and the same classification scheme over Guangzhou City, China, we tested two unsupervised and 13 supervised classification algorithms, including a number of machine learning algorithms ...

متن کامل

Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper

A fully automated method uses Landsat Thematic Mapper data to map snow cover in the Sierra Nevada and make quantitative estimates of the fractional snow-covered area within each pixel. We model winter and spring reference scenes as linear mixtures of image end member spectra to produce the response variables for tree-based regression and classification models. Decision trees identify cloud cove...

متن کامل

Artificial Neural Network Approach for Mapping Contrasting Tillage Practices

Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensing approaches are promising for rapid collection of tillage information on individual fields over...

متن کامل

Comparison of Single- and Multi-date Landsat Data for Mapping Wildfire Scars in Ocala National Forest, Florida

Department of Geography, Miami University, Oxford, OH 45056 ([email protected]). Abstract Remote sensing techniques have been widely used to map fire scars in the western United States, but have not been thoroughly tested in the eastern portion of the country. In this study, a 1998 Landsat Thematic Mapper (TM) image and a 1999 Enhanced Thematic Mapper (ETM1) image were used to test different i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012